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The transient vibration of a high-speed feed drive system is investigated. In this study, an
analogue vibratory equivalent model with multi-degree of freedom assembled with spring,
mass and damper is used to simulate the dynamic behavior of a feed drive system. The
worktable is capable of travelling at variable speed and can be brought to a halt at a desired
position on the supporting structure. The focus is placed on the vibration response caused
by the moving table subjected to di!erent velocity motion programs. Results show that
doubling the table moving speed raises more than four times of the table displacement at the
moment that the table stops. A motion program with abrupt changes in the velocity and the
acceleration should be avoided. Moreover, the symmetrical motion program leads to less
vibration in the horizontal direction for the supporting structure.
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1. INTRODUCTION

The function of mechanical feed drive system in a machine tool is to transmit the motion
received from the feed motor to the table. A mechanical feed drive system comprises
components such as servomotor, ball screw and a moving table that is mounted on
a supporting structure. Because increased productivity has recently become a stringent
necessity, demands of a high-speed feed drive system increase. These increases in speed
demands were accompanied by constant requirements of improved machining accuracy.
The position error of the table in a feed drive system is hindered not only by kinematic error
but also by dynamic behavior of components due to acceleration forces and friction. With
the increased demands in performance, considerable vibration problems become apparent.
Vibrations are undesirable for a feed drive system. However, it is di$cult to eliminate the
vibration. The most one can accomplish is to keep the vibration at a tolerable value. The
existence of large values of vibration prohibits high-speed operation and this makes
vibration analysis of a feed drive system necessary. A basic understanding of the underlying
phenomena is vital to control these vibrations and save operations of the system.

Although the dynamic responses of problems of oscillations of beams with a moving force
or attached moving masses, in which the inertia term of the riding particle is taken into
account, have received much attention for many years [1}8], dynamic characteristics of
these systems have not been fully clari"ed yet. The motion of the whole structure is usually
deduced from the analysis of a single moving concentrated mass instead of a moving table
with "nite length. Furthermore, in most research either the velocity or the acceleration of
moving mass is held to be constant.

We are concerned here with the vibration response of a feed drive system induced by
a worktable with "nite length that travels with high speed. A simple model, which uses
0022-460X/01/030489#16 $35.00/0 ( 2001 Academic Press



490 C. C. CHENG AND J. S. SHIU
spring, mass and damper, has been constructed that describes the complex interaction
between the moving table and the supporting structures, i.e., guide ways. This model includes
the e!ect of friction between the table and the guide way. Moreover, important features to be
carried out in the analysis include the ability to bring the table to a halt at a desired position
and an arbitrary moving velocity pro"le for the table. The focus is placed on the vibration
response caused by di!erent velocity motion programs and it is the basis to investigate the
dynamics of a feed drive system due to the motion of the moving table. Finally, numerical
results of the vibration response are obtained to illustrate the theoretical predictions.

2. FORMULATION

A feed drive system is an assembly of individual units, such as servomotor, guide way,
supporting structures and work table. A work table is mounted on a supporting structure
with suitable guide ways and a feed screw is used to impart motion to the work table. A feed
drive is now considered from the point of view of its dynamic characteristics, therefore it
may be considered as a multi-mass vibrator. Consider that a table of "nite length l is
travelling on a supporting structure with variable speed as shown in Figure 1. Interfaces of
individual components are modelled using springs and dampers. Especially, the damping
capacity of the table is mainly produced in the contacting surface (e.g., guide way) and the
equivalent coe$cient of viscous damping is assumed to be independent of the moving speed
of the table [9]. The notations used in Figure 1 to describe the motion of the feed drive
system when the table is moving are listed in Appendix A.

In Figure 1, i and j are unit vectors in the non-rotating x}y frame, whereas t and n are the
directions tangential and normal to the supporting structure. The co-ordinates, h

l
, h

3
, h

5
,

h
M

and h
B

are used to describe the motions of the system. In order to derive the governing
equations of motion, the velocity and acceleration of the table should be found "rst. The
velocity V

M
of the mass center of the table as denoted by P is given by

V
M
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B
#V
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#h0

B
]QP, (1)

where vectors are represented by boldfaced letters, the subscript M stands for the table, the
subscript B denotes the supporting structure, a dot superscript means a time derivative, V

B
is
Figure 1. System con"guration while the table is moving.



Figure 2. Geometry of position vector QP.
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the velocity of the mass center of the supporting structure, V
rel

is the table velocity relative
to the supporting structure and QP is the position vector directed from P to Q. The relative
velocity V

rel
is expressed as

V
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j, (2)

where <
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are Cartesian components of the relative velocity given by
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Note that<
Mt

is the table moving speed tangential to the supporting structure and it is given
by a known motion program. The position vector QP as shown in Figure 2 is expressed as
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where
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The acceleration a
M

of the mass center P is expressed as

a
M
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where a double dot superscript means a second derivative with respect to time, a
B

is the
acceleration of the supporting structure and a

rel
is the table acceleration relative to the

supporting structure. Letting sin hOh and cos hO1 for small angles, furthermore, neglecting
its associated high-order terms, h2

M
, h2

B
and h

M
h
B
, the velocity and acceleration of the mass
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center P relative to the supporting structure are approximated by
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where a
Mt

is the table acceleration tangential to the supporting structure and is given by
a motion program. Although the angles, h

B
and h

M
are assumed to be small, it does not

imply that the associated angular velocity and angular acceleration are small,
correspondingly. The acceleration of the mass center Q of the supporting structure is
expressed as
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Substituting equations (6), (7), (9) and (10) into equation (8), the Cartesian components of the
acceleration of the table, a

Mx
and a

Mx
are
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The unknowns in equations (12) and (13) are h
1
, h

3
, h

B
, h

M
and their associated time

derivatives. In spite of the simplicity of the model, the mathematical analysis for its behavior
is rather complicated due to the presence of the convective acceleration. The equations
governing the motion of the system can be derived from the dynamic equilibrium of forces
and momenta. Dynamic equilibrium from the free-body diagram of the table shown in
Figure 3 yields the following equations:
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Figure 3. Free-body diagram of the table.

Figure 4. Free-body diagram of the supporting structure.
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The notations used in equations (14}16) and Figure 3 are listed in Appendix A. Forces from
the interfaces are given by
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Dynamic equilibrium from the free-body diagram of the supporting structure shown in
Figure 4 yields the following equations:
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where m is the mass of the supporting structure and I
B

is the mass moment of inertia of the
supporting structure. Forces from interfaces are given by
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The dynamic behavior of a feed drive system is determined by a set of non-linear, second
order di!erential equations (12}21) with unknowns, h

1
, h

3
, h

B
, h

M
and f

p
. The numerical

scheme of the system is obtained by introducing state vectors into the equations of motion
and hence reducing these equations to the "rst order state equations with speci"ed initial
conditions which are solved by using the Runge}Kutta method [10].

2.2. NON-DIMENSIONALIZATION

It is convenient to present numerical results in terms of dimensionless parameters that are
de"ned as follows:
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Substitution of dimensionless parameters into equations (12}21) gives the dimensionless
equations of motion
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3. ANALYSIS PARAMETERS

In order to evaluate the dynamic response, several parameters must be speci"ed to
illustrate some features of the theoretical results. The supporting structure and table are
chosen with the following dimensionless parameters: lK"0)2, aL "0)1, bK "0)1, cL"0)16,
HK "0)01, HK

P
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"0)02, and gL "1]10~6. Assume that there is no cutting force exerted on the

table and the table initially is at rest in its static equilibrium position on the supporting
structure. Then, the table is set into motion from the center, s"0)4, tL"0 to the right end,
s"0)8, at tL"80 of the supporting structure. In order to demonstrate the e!ects of the table
moving speed on the dynamic response of a feed drive system, several motion programs for
the moving table are chosen and will be discussed in the following section.
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4. NUMERICAL RESULTS AND DISCUSSION

Numerical results have been divided into three sections. The "rst section demonstrates
the e!ects of motion programs of di!erent types on the vibration response of a feed drive
system. The second is a comparison of the vibration responses caused by the table that is
moving with di!erent maximum speeds. The third is an investigation of symmetrical e!ects
of motion programs on the vibration response.

4.1. INFLUENCES OF MOTION PROGRAMS OF DIFFERENT TYPES ON THE TABLE RESPONSE

As stated before, important features to be considered in this study include the ability to
bring the table to a halt at a desired position and the ability of the table to travel with an
arbitrary moving velocity pro"le. In general, the quantitative identi"cation of velocity
pro"les is necessary in a feed drive system. Di!erent motion programs for the moving table
result in di!erent levels of vibration. In order to examine the vibration response while the
table is subject to di!erent motion programs, two velocity pro"les are selected as shown in
Figure 5. One of them is a motion program with a constant acceleration and a constant
deceleration. Note that there exist abrupt changes in the velocities at the beginning, at the
maximum speed and at the stop of the table. The other is a cycloidal motion program
described by

<
Mt

"

v
max
2 C1!cos A

2nt

¹ BD , (29)

where v
max

is the associated maximum speed of the table and ¹ is twice of the period for the
table to reach the maximum velocity. Note that there are no abrupt changes in the velocity
and the acceleration either at the beginning or at the end. In both programs, the table takes
Figure 5. Di!erent types of motion programs:**, type 1; }} }, type 4.



Figure 6. Vertical displacement of the table subjected to di!erent types of motion programs:**, type 1; } } },
type 4.
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the same time to reach its maximum speed; then it moves to the right end of the supporting
structure.

The vertical displacement of the table relative to the supporting structure is plotted in
Figure 6. It shows that the table oscillates slowly in the vertical direction. The inertia force,
which acts through the center of gravity of the table, induces a motion in rotation due to
inertia coupling. When the table is travelling with the constant acceleration motion
program, it is not surprising that there are severe vibrations where sudden changes in
velocities occur. These abrupt changes in velocities give in"nite jerks that cause intolerable
vibration and lead to position inaccuracies in a feed drive system. To improve accuracy, it
can often be more cost-e!ective to control the rate of change of acceleration than to
redesign mechanical structures.

4.2. SPEED EFFECTS ON THE TABLE RESPONSE

With the increased demands in table speed, considerable vibration problems become
apparent. In order to obtain a better understanding of the e!ects of table speed on the
vibration of a feed drive system, three cycloidal motion programs are chosen as shown in
Figure 7. The reason to choose cycloidal motion program is due to its simplicity.
Furthermore, as stated before the dwelling conditions of a cycloidal motion program at the
beginning and at the end will not create sudden changes either in the velocity or in the
acceleration. Three di!erent maximum dimensionless speeds are selected. They are 0)01,
0)02 and 0)04 denoted by dashdot, solid and dashed lines in Figure 7, respectively. The
vertical displacement response of the table relative to the supporting structure is plotted in
Figure 8. It shows that the table oscillates slowly in the vertical direction due to inertia
forces. Furthermore, the displacement of the table relative to the supporting structure grows
with an increase of its moving speed.



Figure 7. Velocity pro"les of the table subjected to di!erent maximum speeds: } ) } ) } ) }, v
max

"0)01; 22,
v
max

"0)02; }} } }, v
max

"0)04.

Figure 8. Vertical displacement of the table subjected to di!erent maximum speeds. } ) } ) } )}, v
max

"0)01;22,
v
max

"0)02; }} } }, v
max

"0)04.
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If a feed drive is given higher requirements for the positioning time, as would be the case,
for instance, for punch and nibbling machines or press feeder, then the vibration response
after the table is brought to a halt must also be taken into consideration. Figure 9 shows
similar information to that in Figure 8, except that the response is displayed after the table



Figure 9. Vertical displacement of the table after it stops: } ) } )} ) }, v
max

"0)01; 22, v
max

"0)02; }} } },
v
max

"0)04.
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reaches the right end of the supporting structure. An excess vibration occurs barely after the
moving table is brought to a halt. The displacement amplitude corresponding to the motion
program v

max
"0)44 is the largest as expected. The excess vibration is attributed to the

inertia force of the table caused by the high acceleration and deceleration. From Figures
8 and 9, with an increase of the maximum speed, one may observe that the table
displacement increases not only when the table is moving but also after it stops. These
results showed what could be expected; however, one may "nd that doubling the table
moving speed raises more than four times the table displacement at a moment barely after
the table stops. It implies that an additional vibration absorber or a damping mechanism is
necessary for a high-speed feed drive system.

4.3. SYMMETRICAL EFFECTS OF MOTION PROGRAM

Three velocity programs are chosen as shown in Figure 10. One may observe di!erences
in these velocity curves. One of them is symmetrical with respect to the travelling time but
the others are not. However, they are all cycloidal types of motion programs. Our purpose is
to determine which program could be best put to work.

Figure 11 shows the vertical displacement of the table when the table is moving and
Figure 12 is the displacement response after the table is brought to a halt. In both "gures,
the displacement responses of the table caused by the symmetrical and two asymmetric
velocity pro"les are denoted by solid, dashed and dashdot lines, respectively. In Figure 11,
notice that the net response consists of the product of two multiplicative factors: the "rst
being a short-wavelength oscillation and the second being a long-wavelength amplitude
modulation. This phenomenon can also be found in Figure 6. As stated before, the
long-wavelength oscillation shown in Figure 11 is induced by a motion in rotation due to
inertia coupling. The short-wavelength oscillation results from the vibration of the



Figure 10. Symmetrical and unsymmetrical velocity pro"les for a table: **, type 1; } ) } ) } )}, type 2; }} } },
type 3.

Figure 11. Vertical displacement of the table while the table is moving:**, type 1; } ) } )} ) }, type 2; } } } }, type 3.
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supporting structure excited by the moving table. The complete motion of the table can be
described as a combination of two sinusoidal waves of di!erent frequencies. Note that if one
of the frequencies is close to, but not exactly equal to, the other frequency, the well-known
phenomenon &&beating'' may occur. In other words if these displacements combined



Figure 12. Vertical displacement of the table after it stops: **, type 1; } ) } ) } ) }, type 2; } } } }, type 3.
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in-phase, the result would be

(sinu
1
t#sinu

2
t)"2 sin A

u
1
#u

2
2 B t cosA

u
1
!u

2
2 B t, (30)

where u
1
and u

2
represent the frequencies of two sinusoidal waves. In this kind of vibration,

the amplitude builds up and then diminishes in a regular pattern, which is undesirable for
a feed drive system due to an increase of the net response.

Comparing the results of the symmetrical and asymmetric velocity pro"les, shown in
Figures 11 and 12, it is di$cult to pick a speci"c motion program that causes least vibration
of the table. Among the responses shown in Figure 12, the pro"le type 3, denoted by
a dashed line, displays the largest displacement barely after the table stops. This
phenomenon is also attributed to the inertia e!ect caused by a high deceleration of the table
near the end of the supporting structure.

In order to identify the in#uences of di!erent velocity pro"les not only on the table but
also on the supporting structure. Figures 13 and 14 show the displacement response of the
supporting structure in the vertical and horizontal directions. Note that friction is the main
factor that causes vibration in the horizontal direction. From the general trend indicated in
Figure 13 it follows that di!erent types of motion programs have less in#uence on the
vibration of the supporting structure in the vertical direction while the table is moving and
after the table stops. However, in Figure 14, it shows that the symmetrical motion program
induces less vibration in the horizontal direction for the supporting structure after the table
stops. The relatively large magnitude of the displacement response in the horizontal
direction caused by the asymmetric motion programs results from the relatively high
acceleration and deceleration near the beginning and near the end of the travelling,
respectively.



Figure 13. Vertical displacement of the supporting structure: **, type 1; } ) } ) } )}, type 2; } }} }, type 3.

Figure 14. Horizontal displacement of the supporting structure after the table stops:**, type 1; } ) } ) } ) }, type
2; } }} }, type 3.
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5. CONCLUSIONS

Transient vibrations of a table with "nite length that moves on a supporting structure are
studied. The table is travelling with variable speed and can be brought to a halt at any
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position on the supporting structure, which is found to be more practical. In spite of the
simplicity of the model, the mathematical analysis of its behavior is rather complicated due
to the presence of the friction and the convective acceleration. Results of this analytical
study are summarized as follows:

1. Doubling the table moving speed raises more than four times the table displacement at
the moment that the table stops.

2. Di!erent motion programs for the moving table result in di!erent levels of vibration. If
accuracy needs to be maintained especially at the beginning and at the end of
the table's movement, a motion program with abrupt changes in the velocity and the
acceleration pro"les should be avoided.

3. The symmetrical property of cycloidal motion programs has less in#uence on the
vibration response of the supporting structure in the vertical direction. However,
the symmetrical motion program leads to less vibration in the horizontal direction
for the supporting structure. The relatively large displacement response caused
by the asymmetric motion programs results from the relatively high accelera-
tion and deceleration near the beginning and near the end of the travelling,
respectively.

4. Although the mathematical analysis of the system behavior is rather complicated, the
simulation demonstrated can easily incorporate the transient vibration during
a machining process.
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APPENDIX A: NOMENCLATURE

a distance from P to the left end of table
a
B

acceleration of mass center of supporting structure
a
M

acceleration of mass center of table
a
Mt

acceleration of table driven by ball screw
a
rel

table acceleration relative to supporting structure
b distance from P to the right end of table
c distance from A to the location of cutting force and it is parallel to the table surface
c
1
, c

2
, c

3
damping coe$cients of interfaces

f
p

thrust from ball screw
f
cx

cutting force in the vertical direction
f
cy

cutting force in the horizontal direction
h
p

vertical distance from thrust to P, h
p
"H

p
![h

1
#((a#b)/2) sin h

M
]

h
w

horizontal distance from the location of cutting force to P,
h
w
"H

w
cos h

M
![(c!a) sin h

M
]

h
1

vertical displacement of point A relative to the supporting structure
h
3

vertical displacement of point D
h
5

horizontal displacement of point D
hQ
1

velocity of point A relative to the supporting structure in the vertical direction
hG
1

acceleration of point A relative to the supporting structure in the vertical direction
hG
3

acceleration of point D in the vertical direction
hQ
5

velocity of point D in the horizontal direction
hG
5

acceleration of point D in the horizontal direction
H vertical distance from P to the surface of supporting structure before the table is set to

move
H

p
vertical distance from table before it is set into motion to the thrust f

p
H

w
distance from mass center of table P to the location of cutting force and it is normal to the
table surface

I
B

mass moment of inertia of supporting structure
I
M

mass moment of inertia of table
k
1
, k

2
, k

3
elastic constants of interfaces

l length of table, "a#b
¸ length of supporting structure
m mass of supporting structure
M mass of table
P mass center of table
Q mass center of supporting structure
QP position vector directed from P to Q
s distance along which the table is moving
¹ period for table to reach maximum velocity
V
B

velocity of mass center Q of supporting structure
<
Mt

table velocity driven by ball screw
V
M

velocity of mass center P of table
V

rel
table velocity relative to supporting structure

<
reli

, <
relj

Cartesian components of the relative velocity, V
rel

v
max

maximum speed of table
h0
B

angular velocity of supporting structure
hG
B

angular acceleration of supporting structure
hQ
M

angular velocity of table
hG
M

angular acceleration of table
k friction coe$cient
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